Comparative Analysis of Two Optimization Models for Prediction of Compressive Strength of Lateritic Block

B. A. Alabadan ${ }^{1}$, E. S. Ajayi ${ }^{1}$, O. A. Ilesanmi ${ }^{1}$ and M. Nlemogu ${ }^{2}$
1 Department of Agricultural \& Bio-resources Engineering, Faculty of Engineering, Federal University Oye - Ekiti, Nigeria.
2 Department of Civil Engineering, Faculty of Engineering, Niger - Delta University, Wilberforce Island, Nigeria Corresponding author email: emmanuel.ajayi@fuoye.edu.ng

Abstract

Two different optimization models for prediction of compressive strength of lateritic blocks was performed using statistical analysis for the lateritic block data obtained from experimental work done in this study. The models used are Scheffee's and Osadebe's optimization theories to predict the compressive strength of lateritic blocks. The results of predictions were comparatively analysed using the statistical package for social sciences (SPSS) for the student's t-test. It was found that the two models are acceptable for the prediction of compressive strength of lateritic blocks.

Index Terms- Compressive strength, Lateritic block, Mix proportion, Osadebe's theory, Scheffee's theory

1 Introduction

Lateritic soils are the product of intensive weathering that occurs under tropical and subtropical climatic condition Iresulting in the accumulation of hydrated iron and aluminium oxides. In Nigeria, laterite is readily available and mostly used for construction or foundation material for roads, airfield and compacted fill in embankments due to their favourable engineering properties. The cost of river bed sand, which is popularly used for block production has been on the increase and becoming scarce in some areas. Laterite has been found to be a suitable alternative or partial replacement for river bed sand. According to [1], sand-laterite blocks were produced by replacing laterite partially with river sand using 10% to 40% replacement levels. This partial replacement is necessary to reduce total dependence on river sand in block production. According to the cost analysis conducted by [2], laterite blocks have 40% cost advantage over similar sandcrete blocks. Several optimization studies have been carried out for adequate prediction of compressive strength of blocks or concrete made of different components or admixture. This study compares Scheffee's and Osadebe's optimization theories to predict the compressive strength of lateritic blocks.

2 MATERIALS AND METHODS.

2.1 Materials.

The materials that were used in casting the lateritic blocks were water, cement and laterite. The equipment used include shovels, weighing balance, hand trowel, solid mould (six inches block mould), scoop etc.

Water: The water that was used in the production of the lateritic block was sourced from the public water supply in Niger Delta University Campus, Wilberforce Island, Bayelsa State, Nigeria.

Cement: Ordinary Portland cement was used.
Laterite: The laterite soil sample was collected from borrow pit from Ahoada, Rivers State, Nigeria. The red coloured laterite soil sample was air dried and crushed to fine granules.

2.2 Experimental Method.

The experimental procedure includes sampling, weighing, mixing, moulding or casting of lateritic block, curing and laboratory analysis to determine the compressive strength of each sample of lateritic block. The actual mix proportions were measured by weight and used to produce lateritic blocks of size $450 \mathrm{~mm} \times 150 \mathrm{~mm} \times 225 \mathrm{~mm}$. A total of forty-eight lateritic block were cast according to the specified mix ratios. The blocks were cured for 28 days in an open place by sprinkling of water. In accordance to BS 2028 (1968) [3], the blocks were tested for compressive strength. The results obtained from the crushing tests were subjected to optimization analysis. .

2.3 Analytic Method
 Scheffe's Regression Model

According to [4], the relationship between the actual Z and the uncoded or pseudo X component is linear and could be represented by the equation shown below:

$$
\begin{equation*}
[\mathrm{Z}]=[\mathrm{A}][\mathrm{X}] \tag{1}
\end{equation*}
$$

Where $\mathrm{Z}=$ Actual mix ratio
$X=$ Pseudo mix ratio
A = Conversion factor.

This could be explained by a triangle simplex for a three component in the mixture as shown below:

$$
\left(\begin{array}{l}
z_{1} \tag{16}\\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

(2) $b_{23}+b_{22}+b_{33}=A_{23}$
$b_{o}+b_{1}+b_{22}=A_{2}$
$b_{o}+b_{1}+b_{33}=A_{3}$
$b_{12}+b_{11}+b_{22}=A_{12}$
$b_{13}+b_{11}+b_{33}=A_{13}$
Substituting (14) - (19) into (13) we have:
$Y=A_{1} X_{1}+A_{2} X_{2}+A_{3} X_{3}+A_{12} X_{1} X_{2}+A_{13} X_{1} X_{3}+A_{23} X_{2} X_{3}$
The general equation of regression for Scheffe is given as follows:
$Y=b_{o}+\Sigma \mathrm{b}_{\mathrm{ij}} X^{2}+\Sigma \mathrm{b}_{\mathrm{i}} X_{i} X_{j}+\Sigma \mathrm{b}_{\mathrm{ijk}} X_{i} X_{j} X_{k}+----+e$
Where $\mathrm{Y}=$ the response
$b_{o}=$ arbitrary constant
$\mathrm{e}=$ random error (i.e. the combine effects of variable excluded in the model)

Hence, establishing Scheffe's regression model equation with respect to number of components (three - pseudo component mix) at each point is as follow:
$Y=b_{o}+b_{1}+X_{1}+b_{2}+\mathrm{X}_{2}+\mathrm{b}_{3}+\mathrm{X}_{3}+\mathrm{b}_{11}+\mathrm{X}_{1}^{2}+\mathrm{b}_{12}+$ $\mathrm{X}_{1} X_{2} b_{13}+X_{1} X_{3}+b_{22}+X_{2}^{2}+b_{23}+X_{2} X_{3}+b_{33} X_{3}^{2}+e$

Since sum of components at each vertex must be equal to unity i.e.

$$
\begin{equation*}
X_{1}+X_{2}+X_{3}=1 \tag{5}
\end{equation*}
$$

Multiplying (4) by b_{o} will yield:

$$
b_{o} X_{1}+b_{0} X_{2}+b_{0} X_{3}=b_{0}
$$

Similarly, multiplying (5) by $X_{i}(i=1,2,3)$ gives

$$
\begin{gather*}
\mathrm{X}_{1}^{2}+X_{1} X_{2}+X_{1} X_{3}=X_{1} \tag{6}\\
X_{2} X_{1}+\mathrm{X}_{2}^{2}+X_{1} X_{3}=X_{2} \tag{7}\\
X_{3} X_{1}+X_{3} X_{2}+\mathrm{X}_{3}^{2}=X_{3} \tag{8}
\end{gather*}
$$

Rearranging (6) - (8) gives:

$$
\begin{align*}
& \mathrm{X}_{1}^{2}=X_{1}+X_{1} X_{2}-X_{1} X_{3} \tag{9}\\
& \mathrm{X}_{2}^{2}= X_{2}+X_{2} X_{1}-X_{2} X_{3} \tag{10}\\
& \mathrm{X}_{3}^{2}=X_{3}+X_{3} X_{1}-X_{3} X_{2} \tag{11}
\end{align*}
$$

Substituting (9) - (11) into (4) will yields:

$$
\begin{align*}
& Y=b_{o}+X_{1}+b_{0}+\mathrm{X}_{2}+b_{0}+\mathrm{b}_{3}+\mathrm{X}_{3}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+b_{3} X_{3}+ \\
& b_{11}\left(X_{1}-X_{1} X_{2}-X_{1} X_{3}\right)+b_{22}\left(X_{1}-X_{1} X_{2}-X_{1} X_{3}\right)+b_{33}\left(X_{3}-\right. \tag{32}\\
& \left.X_{1} X_{3}-X_{2} X_{3}\right)+b_{12} X_{1} X_{2}+b_{13} X_{1} X_{3}+b_{23} X_{2} X_{3} \tag{12}
\end{align*}
$$

Rearranging (11) and collecting like terms together gives:

$$
\begin{align*}
& Y=\left(b_{o}+b_{1}+b_{11}\right)+X_{1}+\left(b_{0}+b_{1}+\mathrm{b}_{12}\right) \mathrm{X}_{2}+\left(b_{0}+b_{1}+\right. \\
& \left.\mathrm{b}_{33}\right)+\mathrm{X}_{3}+\left(b_{12}+b_{11}+\mathrm{b}_{22}\right) \mathrm{X}_{1} \mathrm{X}_{2}+\left(b_{13}+b_{11}+\mathrm{b}_{33}\right) \mathrm{X}_{1} \mathrm{X}_{3}+ \tag{31c}\\
& \left(b_{23}+b_{22}+\mathrm{b}_{33}\right) \mathrm{X}_{2} \mathrm{X}_{3} \tag{13}
\end{align*}
$$

Introducing constants, we have:
$b_{o}+b_{1}+b_{11}=A_{1}$
Rearranging (22) and (28), we have:
$A_{i}=n_{i}$
$A_{i j}=4 n_{i j}-2 A_{i}-2 A_{j}$
Substituting (29) into (30) yields:
$A_{i j}=4 n_{i j}-2 n_{i}-2 n_{j}$
Substituting these values in equation (29) and (31) into (20) and collect like terms will give:
$Y=n_{1} X_{1}+n_{2} X_{2}+n_{3} X_{3}+\left(4 n_{12}-2 n_{1}-2 n_{2}\right) X_{1} X_{2}+$
$\left(4 n_{13}-2 n_{1}-2 n_{3}\right) X_{1} X_{3}+\left(4 n_{23}-2 n_{2}-2 n_{3}\right) X_{2} X_{3}$
$Y=n_{1} X_{1}+n_{2} X_{2}+n_{3} X_{3}+4 n_{12} X_{1} X_{2}-2 n_{1} X_{1} X_{2}-2 n_{2} X_{1} X_{2}+$
$4 n_{13} X_{1} X_{3}-2 n_{1} X_{1} X_{3}-2 n_{3} X_{1} X_{3}+4 n_{23} X_{2} X_{3}-2 n_{2} X_{2} X_{3}-$
$2 n_{3} X_{2} X_{3}$
$Y=\left(n_{1} X_{1}-2 n_{1} X_{1} X_{2}-2 n_{1} X_{1} X_{3}\right)+\left(n_{2} X_{2}-2 n_{2} X_{1} X_{2}-\right.$
$\left.2 n_{2} X_{2} X_{3}\right)+\left(n_{3} X_{3}-2 n_{3} X_{1} X_{3}-2 n_{3} X_{2} X_{3}\right)+4 n_{12} X_{1} X_{2}+$
$4 n_{13} X_{1} X_{3}+4 n_{23} X_{2} X_{3}$
$Y=n_{1} X_{1}\left(1-2 X_{2}-2 X_{3}\right)+n_{2} X_{2}\left(1-2 X_{1}-2 X_{3}\right)+n_{3} X_{3}(1-$
$\left.2 X_{1}-2 X_{2}\right)+4 n_{12} X_{1} X_{2}+4 n_{13} X_{1} X_{3}+4 n_{23} X_{2} X_{3}$

Recall (5)

$$
\begin{equation*}
X_{1}+X_{2}+X_{3}=1 \tag{35}
\end{equation*}
$$

Multiplying (5) by 2 gives:
$2 X_{1}+2 X_{2}+2 X_{3}=2$
Subtracting 1 from both sides of (35), we have:
$2 X_{1}-1=1-2 X_{2}+2 X_{3}$
$2 X_{2}-1=1-2 X_{1}+2 X_{3}$
$2 X_{3}-1=1-2 X_{1}+2 X_{2}$
Substituting (36) - (38) into (32) gives:

$$
\begin{array}{r}
Y=n_{1} X_{1}\left(2 X_{1}-1\right)+n_{2} X_{2}\left(2 X_{2}-1\right)+n_{3} X_{3}\left(2 X_{3}-1\right) \\
+4 n_{12} X_{1} X_{2}+4 n_{13} X_{1} X_{3}+4 n_{23} X_{2} X_{3} \tag{39}
\end{array}
$$

Substituting the value of $\mathrm{n}_{1}, \mathrm{n}_{2} \ldots \ldots \ldots \ldots, \mathrm{n}_{2,3}$ from Table 2 into (36a), we obtained:

$$
\begin{align*}
& Y=1.250 X_{1}\left(2 X_{1}-1\right)+1.292 X_{2}\left(2 X_{2}-1\right)+0.950 X_{3}\left(2 X_{3}-1\right) \\
& \quad+4(1.620) X_{1} X_{2}+4(0.897) X_{1} X_{3} \\
& \quad+4(1.173) X_{2} X_{3} \\
& Y=2.5006 X_{1}^{2}-1.250 X_{1}+2.5846 X_{2}^{2} X_{2}-1.292 X_{2}+1.9 X_{3}^{2}- \\
& 0.950 X_{3}+6.48 X_{1} X_{2}+3.588 X_{1} X_{3}+4.692 X_{2} X_{3} \tag{40}
\end{align*}
$$

Where $\mathrm{Y}=$ compressive strength, $\mathrm{X}_{\mathrm{n}}(\mathrm{n}=1,2$ and 3$)=$ pseudo components for water, cement and laterite respectively.

Equation (40) is the final three components Scheffe's Model equation. On substituting the pseudo mix ratio of different points of observation as used in the experiment into (40), compressive strength of laterite blocks shown in Table 4 were obtained.

Osadebe's Regression Model

Second order Osadebe's regression equation for five components is given by [5] as:
$Y=\alpha_{1} Z_{1}+\alpha_{2} Z_{2}+\alpha_{3} Z_{3}+\alpha_{4} Z_{4}+\alpha_{5} Z_{5}+\alpha_{12} Z_{1} Z_{2}+$ $\alpha_{13} Z_{1} Z_{3}+\alpha_{14} Z_{1} Z_{4}+\alpha_{15} Z_{1} Z_{5}+\alpha_{23} Z_{2} Z_{3}+\alpha_{24} Z_{2} Z_{4}+\alpha_{25} Z_{2} Z_{5}+$ $\alpha_{34} Z_{3} Z_{4}+\alpha_{35} Z_{3} Z_{5}+\alpha_{45} Z_{4} Z_{5}$

Equation (41) is generally expressed as:

$$
\begin{equation*}
\left[Y_{n}\right]=\left[Z_{n}\right]\left[\alpha_{n}\right] \tag{42}
\end{equation*}
$$

Where $Y_{n}=$ experimental compressive strength,
$Z_{n}=p s e u d o$ components,
$\alpha_{n}=$ coefficient of the model and
$n=$ the number of observation.
Equation (42) can be expanded for a three component mix at six points of observation as:

$$
\left(\begin{array}{c}
\\
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5} \\
Y_{6}
\end{array}\right)=\left(\begin{array}{cccccc}
Z^{1}{ }_{1} & Z^{1}{ }_{2} & Z^{1}{ }_{3} & Z_{1} Z^{1}{ }_{2} & Z_{2} Z^{1}{ }_{3} & Z_{2} Z^{1}{ }_{3} \\
Z^{2}{ }_{1} & Z^{2}{ }_{2} & Z^{2}{ }_{3} & Z_{1} Z^{2}{ }_{2} & Z_{2} Z^{2}{ }_{3} & Z_{2} Z^{2}{ }_{3} \\
Z^{3}{ }_{1} & Z^{3}{ }_{2} & Z^{3}{ }_{3} & Z_{1} Z^{3}{ }_{2} & Z_{2} Z^{3}{ }_{3} & Z_{2} Z^{3}{ }_{3} \\
Z^{12}{ }_{1} & Z^{12}{ }_{2} & Z^{12}{ }_{3} & Z_{1} Z^{12}{ }_{2} & Z_{2} Z^{12}{ }_{3} & Z_{2} Z^{12}{ }_{3} \\
Z^{13}{ }_{1} & Z^{13}{ }_{2} & Z^{13}{ }_{3} & Z_{1} Z^{13}{ }_{2} & Z_{2} Z^{13}{ }_{3} & Z_{2} Z^{13}{ }_{3} \\
Z^{23}{ }_{1} & Z^{23}{ }_{2} & Z^{23}{ }_{3} & Z_{1} Z^{23}{ }_{2} & Z_{2} Z^{23}{ }_{3}{ }_{3} & Z_{2} Z^{23}{ }_{3}
\end{array}\right)\left(\begin{array}{c}
\\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right)
$$

$$
\begin{align*}
& {\left[\alpha_{n}\right]=\left[Z_{n}\right]^{-1}\left[\mathrm{Y}_{\mathrm{n}}\right]} \tag{44}\\
& Z_{i}=\frac{s_{i}}{s} \tag{45}\\
& S=S_{1}+S_{2}+S_{3} \tag{46}\\
& \sum Z=1 \tag{47}
\end{align*}
$$

A triangle simplex was used in this study to depict six points interaction for three components namely: water, cement and laterite. At the vertices, the actual mix ratios, for example are N1 (0.55: 1: 3.5); N2 (0.65: 1: 4.5) and N3 (0.75: 1: 5.5). The corresponding pseudo mix ratio are N1 (1: 0: 0), N2 (0: 1: 0) and N3 (0:0:1).

Point 1: Substituting the mix ratio from point N1 into equation 1 gives:

$$
\binom{0.55}{3.5}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{48}\\
a_{21} & 1 \\
a_{31} & a_{32} & a_{32} \\
a_{32} & a_{33}
\end{array}\right)\binom{1}{0}
$$

Solving equation above we have:
$0.55=a_{11} \times 1+a_{12} \times 0+a_{13} \times 0 ; \therefore a_{11}=0.55$
$1=a_{21} \times 1+a_{22} \times 0+a_{23} \times 0 ; \therefore a_{21}=1$
$3.5=a_{31} \times 1+a_{32} \times 0+a_{33} \times 0 ; \therefore a_{31}=3.5$
Point 2: Substituting the mix ratio from point N2 into (1), we have:

$$
\left(\begin{array}{c}
0.65 \tag{49}\\
1 . \\
4.5
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Solving equation above we have:
$0.65=a_{11} \times 0+a_{12} \times 1+a_{13} \times 0 ; \therefore a_{12}=0.65$
$1=a_{21} \times 0+a_{22} \times 1+a_{23} \times 0 ; \therefore a_{22}=1$
$4.5=a_{31} \times 0+a_{32} \times 1+a_{33} \times 0 ; \therefore a_{32}=4.5$
Point 3: Substituting the mix ratio from N3 into (1) gives:

$$
\left(\begin{array}{c}
0.75 \tag{50}\\
1 \\
5.5
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} \\
a_{31} & a_{32} & a_{23}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Solving equation above we have:
$0.75=a_{11} \times 0+a_{12} \times 0+a_{13} \times 1 ; \therefore a_{13}=0.75$
$1=a_{21} \times 1+a_{22} \times 0+a_{23} \times 1 ; \therefore a_{23}=1$
$5.5=a_{31} \times 1+a_{32} \times 0+a_{33} \times 1 ; \therefore a_{33}=5.5$
Substituting the elements of matrix A into (1), we have:
$\left(\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right)=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)\left(\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right)$
Point 1, 2

$$
\left(\begin{array}{l}
z_{1} \tag{52}\\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0.55 & 0.65 & 0.75 \\
1 & 1 & 1 \\
3.5 & 4.5 & 5.5
\end{array}\right)\left(\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right)=\left(\begin{array}{c}
0.6 \\
1 \\
4
\end{array}\right)
$$

Point 2, 3

$$
\left(\begin{array}{l}
z_{1} \tag{53}\\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0.55 & 0.65 & 0.75 \\
1 & 1 & 1 \\
3.5 & 4.5 & 5.5
\end{array}\right)\left(\begin{array}{c}
0 \\
0.5 \\
0.5
\end{array}\right)=\left(\begin{array}{c}
0.7 \\
1 \\
5
\end{array}\right)
$$

Point 1, 3

$$
\left(\begin{array}{l}
z_{1} \tag{54}\\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0.55 & 0.65 & 0.75 \\
1 & 1 & 1 \\
3.5 & 4.5 & 5.5
\end{array}\right)\left(\begin{array}{c}
0.5 \\
0 \\
0.5
\end{array}\right)=\left(\begin{array}{c}
0.65 \\
1 \\
4.5
\end{array}\right)
$$

These give the corresponding actual mix ratio as N1,2 (0.6: 1 : $4)$; N2,3(0.7: 1: 5) and N1,3(0.65: 1: 4.5). The first six mix ratio could be summarized as shown in the Table 1.
Applying (41) for each point we have:

Point \mathbf{N}_{1}

$Z_{1}=\frac{s_{1}}{s}, Z_{2}=\frac{s_{2}}{s}, Z_{3}=\frac{s_{3}}{s}$
from (45)
$S=$ actual mix ratio
$S=0.55+1+3.5=5.05$

$$
\begin{aligned}
& Z_{1}^{1}=\frac{0.55}{5.05}=0.11, \quad Z_{2}^{1}=\frac{1}{5.05}=0.20, Z_{3}^{1}=\frac{3.5}{5.05}=0.69 \\
& Z_{1}^{1}+Z_{2}^{1}+Z_{3}^{1}=1\left(\sum Z_{i}=1\right) \\
& \therefore \quad Z_{1} Z_{2}^{1}=0.11 \times 0.2=\mathbf{0 . 0 2} \\
& Z_{1} Z_{3}^{1}=0.11 \times 0.69=\mathbf{0 . 0 8} \\
& Z_{2} Z_{3}^{1}=0.2 \times 0.69=\mathbf{0 . 1 4}
\end{aligned}
$$

Point N_{2}
Similarly, $S=0.65+1.00+4.50=6.15$

$$
\left.\begin{array}{rl}
Z_{1}^{2}=\frac{0.65}{6.15} & =0.11, \quad Z_{2}^{2}=\frac{1.00}{6.15}=0.16, Z_{3}^{2}=\frac{4.5}{6.15}=0.73 \\
\therefore \quad Z_{1} Z_{2}^{2} & =0.11 \times 0.16=\mathbf{0 . 0 2} \\
Z_{1} Z_{3}^{2} & =0.11 \times 0.73=\mathbf{0 . 0 8} \\
& Z_{2} Z_{3}^{2}
\end{array}\right)=0.16 \times 0.73=\mathbf{0 . 1 2} 8 .
$$

Point N_{3}

$S=0.75+1+5.5=7.25$
$Z^{3}{ }_{1}=\frac{0.75}{7.25}=0.10, \quad Z^{3}{ }_{2}=\frac{1.00}{7.25}=0.14, Z_{3}^{3}=\frac{5.5}{7.25}=0.76$
$\therefore \quad Z_{1} Z^{3}{ }_{2}=0.10 \times 0.14=\mathbf{0 . 0 1}$

$$
\begin{aligned}
Z_{1} Z_{3}^{3} & =0.10 \times 0.75=\mathbf{0 . 0 8} \\
Z_{2} Z_{3}^{3} & =0.14 \times 0.75=\mathbf{0 . 1 1}
\end{aligned}
$$

Point $\mathbf{N}_{1,2}$

$\mathrm{S}^{12}=0.6+1+4.0=5.6$
$Z^{12}{ }_{1}=\frac{0.6}{5.6}=0.11, \quad Z^{12}{ }_{2}=\frac{1.00}{5.6}=0.18, Z^{12}{ }_{3}=\frac{4.0}{5.6}=0.71$

$$
\begin{aligned}
\therefore \quad Z_{1} Z^{12} & =0.11 \times 0.18=\mathbf{0 . 0 2} \\
& Z_{1} Z^{12}{ }_{3}=0.11 \times 0.71=\mathbf{0 . 0 8} \\
& Z_{2} Z^{12}{ }_{3}=0.18 \times 0.71=\mathbf{0 . 1 3}
\end{aligned}
$$

Point $\mathrm{N}_{1,3}$

$S^{13}=0.65+1+4.5=6.15$

$$
\begin{aligned}
Z^{13}{ }_{1}=\frac{0.65}{6.15} & =0.11, \quad Z^{13}=\frac{1.00}{6.15}=0.16, Z_{3}^{13}=\frac{4.5}{6.15}=0.73 \\
\therefore \quad Z_{1} Z^{13}{ }_{2} & =0.11 \times 0.16=\mathbf{0 . 0 2} \\
& Z_{1} Z^{13}{ }_{3}=0.11 \times 0.73=\mathbf{0 . 0 8} \\
& Z_{2} Z^{13}{ }_{3}=0.16 \times 0.73=\mathbf{0 . 1 2}
\end{aligned}
$$

Point $\mathbf{N}_{2,3}$

$\mathrm{S}^{23}=0.75+1+5.0=6.75$

$$
\begin{aligned}
Z_{1}^{23}=\frac{0.75}{6.75} & =0.11, \quad Z_{2}^{23}=\frac{1.00}{6.75}=0.15, Z_{3}^{23}=\frac{5}{6.75}=0.74 \\
\therefore \quad Z_{1} Z^{23}{ }_{2} & =0.11 \times 0.15=\mathbf{0 . 0 2} \\
Z_{1} Z_{3}^{23} & =0.11 \times 0.74=\mathbf{0 . 0 8} \\
Z_{2} Z_{3}^{23} & =0.15 \times 0.74=\mathbf{0 . 1 1}
\end{aligned}
$$

Substituting these values into (39)

$$
\left(\begin{array}{l}
Y_{1} \tag{55}\\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5} \\
Y_{6}
\end{array}\right)=\left(\begin{array}{cccccc}
0.11 & 0.20 & 0.69 & 0.02 & 0.08 & 0.14 \\
0.11 & 0.16 & 0.73 & 0.02 & 0.08 & 0.12 \\
0.11 & 0.14 & 0.76 & 0.01 & 0.08 & 0.11 \\
0.11 & 0.18 & 0.71 & 0.02 & 0.08 & 0.13 \\
0.11 & 0.16 & 0.73 & 0.02 & 0.08 & 0.12 \\
0.11 & 0.15 & 0.75 & 0.02 & 0.08 & 0.11
\end{array}\right)\left(\begin{array}{l}
\\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right)
$$

From (44) we have:
$\left[\alpha_{n}\right]=\left[Z_{n}\right]^{-1}\left[Y_{n}\right]$

$$
\left(\begin{array}{l}
 \tag{56}\\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right)=\left(\begin{array}{cccccc}
0.11 & 0.20 & 0.69 & 0.02 & 0.08 & 0.14 \\
0.11 & 0.16 & 0.73 & 0.02 & 0.08 & 0.12 \\
0.11 & 0.14 & 0.76 & 0.01 & 0.08 & 0.11 \\
0.11 & 0.18 & 0.71 & 0.02 & 0.08 & 0.13 \\
0.11 & 0.16 & 0.73 & 0.02 & 0.08 & 0.12 \\
0.11 & 0.15 & 0.75 & 0.02 & 0.08 & 0.11
\end{array}\right)\left(\begin{array}{l}
\\
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5} \\
Y_{6}
\end{array}\right)
$$

The sixteen actual mix ratios could be summarized as shown in the Table 2.

Where $Z_{i}(i=1,2, \& 3)=$ pseudo component for water, cement and laterite respectively.
$S_{i}(i=1,2, \& 3)=$
actual mix for water, cement and laterite respectively.
$\mathrm{S}=$ Summation of the actual mix ratio for water, cement
and laterite at each point.

$\left[Z_{n}\right]^{-1}=$			
13007550	75399200.1	25758253.15	-63234130.55
546375.12	3023507.92	989114.556	-2598234.077
127512.5	753992.001	262812.5002	-0626080.5005
-888573.3	-108620088	-36842521.46	91470361.13
-1.5710815	-91233032	-31224753.15	76444429.12
-145985.9	-757761.96	-232214.5549	673036.5381

Determination of the Coefficient of Osadebe's Model.
The coefficients, α are obtained by multiplying the inverse of the Z-matrix by the Y -vector which is the compressive strength result obtained in the laboratory for the first six mix ratios $-\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{12}, \mathrm{n}_{13}, \mathrm{n}_{23}$.

$$
\begin{equation*}
[\mathrm{Z}-\text { matrix }][\mathrm{Y}-\text { vector }]=[\text { Coefficients }] \tag{58}
\end{equation*}
$$

From (40), we have:
$Y=\alpha_{1} Z_{1}+\alpha_{2} Z_{2}+\alpha_{3} Z_{3}+\alpha_{12} Z_{1} Z_{2}+\alpha_{13} Z_{1} Z_{3}+\alpha_{23} Z_{2} Z_{3}$ (60)
Substituting the values of the coefficient, α_{n} from (59) above into (60) we obtained:

$$
\begin{gather*}
Y=-34447104 Z_{1}-1400348 Z_{2}-343046.1 Z_{3}+ \\
49739287 Z_{1} Z_{2}+41665391 Z_{1} Z_{3}+356992.76 Z_{2} Z_{3} \tag{61}
\end{gather*}
$$

Equation (61) is the final three components Osadebe's model equation. On substituting the values of Z_{i} of the sixteen mix ratios used in this study into (61), compressive strength of laterite blocks as shown in Table 5 were obtained.

3 Results and Discussion

3.1 Experimental results.

The experimental test data of laterite block for twenty-eight days compressive strength obtained in the laboratory are shown in Table 3.

Comparison of Scheffe's and Osadebe's Model.

The compressive strength of the laterite block obtained from the two models are shown in Table 6. It could be observed from Table 6 that the highest percentage (\%) difference Scheffe's and Osadebe's predicted compressive strength of laterite block is 1.78%. This shows that both models predict values that are very close to each other. Hence, one could say that that there is no significant difference between the values predicted by both models.

3.2 Test for Adequacy of the Models. Adequacy test for the models

A statistical adequacy test for the mathematical models is

1526468.828
 between fhe fistu914.69 Models. 127422895.6 $-45761442.79 \quad 107485614$
ii. Alternative hypothesis, $\mathrm{H}_{1}^{847155.1733}$: There is a significant difference between the two models.

Scheffe's Model results were tested for adequacy with the experimental results obtained in the laboratory by two tailed t test as shown in Table 7. The results of predictions were comparatively analysed for the student's t-test. The results shows that tcal $=0.476$ using paired-samples t-test. At $\alpha=0.05, \mathrm{df}=9$, ttable $=2: 26$. Since, ttable $>$ tcal It shows that there is no significant difference between the experimental result and the results predicted by the model. Since there exist no difference between the experimental test results and Scheffe's predicted results on one hand and there is no difference between Scheffe's and Osadebe's predicted results on the other hand, it could be infers that there is no difference between experimental test result and Osadebe's predicted result. The results from this study agree with results obtained in the application of Scheffe's model in optimization of compressive strength of lateritic concrete [6], [7].

4 Conclusion

The study showed that the various models produce equivalent approximate compressive strength respectively for each mix ratio. The model equations were tested for adequacy using ttest on ten (10) controlled design points which proved that the models are adequate for use. The strengths predicted by the models are in good agreement with corresponding experimentally observed results obtained in the laboratory. Therefore, using any of these model (Scheffe's and Osadebe's model), any desired compressive strength of laterite block could be easily determined given the mix proportion. Conversely, various mix proportions matching any stipulated compressive strength can easily be obtained.

6 REFERENCES

[1] Okereke, C.E., Onwuka, D.O and N.N. Osadebe. 2014. Static Modulus of Elasticity of Sand-Laterite Blocks. International Journal of Engineering Sciences \& Research Technology. 3(1): 373-380. http://www.ijesrt.com.
[2] Alutu, O.E. and Oghenejobo, A.E. 2006. Strength, Durability and Cost Effectiveness of CementStabilized Laterite Hollow Blocks. Quarterly Journal of Engineering Geology and Hydrogeology 39(1): 6572.
[3] BS 2028, 1364: 1968 Specification for Precast Concrete Blocks: Metric Units. British Standards Institution.
[4] Scheffe, H. 1958. Experiments with Mixtures. Journal of the Royal Statistical Society, Series. B. (20). 344-360.
[5] Osadebe, N.N. and Ibearugbulem, O. M. 2008. Application of Osadebe's Alternative Regression Model in Optimizing Compressive Strength of Periwinkle shell-Granite Concrete. NSE Technical Transaction, 43(1, Jan.- Mar): 47-59.
[6] Mbadike E.M, and Osadebe, N.N. 2013. Application of Scheffe's Model in Optimization of Compressive Strength of Lateritic Concrete. Journal of Engineering and Applied Sciences. 9: 17-23
[7] Osadebe, N.N. 2003. Generalized Mathematical Modeling of Compressive Strength of Normal Concrete as a Multi-variant Function of the Properties of its Constituent Components. University of Nigeria, Nsukka.

Table 1: Values of actual mix proportions and their corresponding fractional portions for a 3-component mixture.

Points	Water	Cement	Laterite	Response
1	0.55	1	3.5	n 1
2	0.65	1	4.5	n 2
3	0.75	1	5.5	n 3
1,2	0.6	1	4	n 12
1,3	0.65	1	4.5	n 13
2,3	0.7	1	5	n 23

Table 2. Summary of the Sixteen Actual Mix Ratios

Points	S1	S2	S3	S
n1	0.55	1	3.5	5.05

n2	0.65	1	4.49	6.14
n3	0.75	1	5.5	7.25
n12	0.60	1	3.995	5.595
n13	0.65	1	4.5	6.15
n23	0.70	1	4.995	6.695
e1	0.65	1	4.4967	6.1467
e2	0.675	1	4.7475	6.4225
e3	0.625	1	4.2475	5.8725
e4	0.65	1	4.495	6.145
e5	0.617	1	4.1667	5.7837
e6	0.633	1	4.3283	5.9613
e7	0.666	1	4.655	6.321
e8	0.683	1	4.8267	6.5097
e9	0.633	1	4.3233	5.9563

Where S = Summation of actual mix ratio for the three components (laterite, cement and water).

Table 3: Experimental Compressive Strength Test Results for 28 Days of Laterite Block.

Points	Replicate 1 $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	Replicate 2 $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	Replicate 3 $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	Average Compressive Strength $(\mathrm{YE}) \mathrm{N} / \mathrm{mm}^{2}$
N 1	1.60	1.17	1.0	1.250
N 2	1.01	1.18	1.69	1.292
N 3	1.17	0.67	1.01	0.950
$\mathrm{~N} 1,2$	2.01	1.17	1.68	1.620
$\mathrm{~N} 1,3$	1.01	1.01	0.67	0.897
$\mathrm{~N} 2,3$	1.34	1.34	0.84	1.173
C 1	1.68	1.17	1.01	1.287
C 2	1.17	1.51	1.01	1.230
C 3	1.01	0.67	0.67	0.783
C 4	1.51	1.34	1.34	1.397
C 5	1.68	1.59	1.51	1.593
C 6	1.51	1.26	1.01	1.260
C 7	2.01	0.84	0.67	1.173
C 8	1.59	1.01	1.01	1.198
C 9	1.17	1.34	1.17	1.226
C 10	1.17	0.67	1.01	0.947

Table 4: Compressive Strength of Laterite Block obtained by Scheffe's Model.

Points	Mix Ratios		Compressive
	Water	Cement	Laterite
Strength (YM)			

 Osadebe's Model.

Points	Mix Ratios			Pseudo Components		Table 7. Compressitemptesks strength from laboratory versus Predicted Compressive ${ }^{2} \mathrm{blRfkM}$)Z3 strength (\$xhefffés Model).			
	Water	Cement	Laterite	Z1	Z2				
N1	0.55	1.00	3.500	0.108910891	0.198019802	0.69306930 Points	YE	YM	DI (YE - YM)
N2	0.65	1.00	4.490	0.105863192	0.16286645	0.73127035 C1	1.287	1.25	0.037
N3	0.75	1.00	5.500	0.103448276	0.137931034	0.75862069 C2	1.230	1.12	0.11 -0.489
N1,2	0.60	1.00	3.995	0.107238606	0.17873101	0.71403038 . C 4	1.397	1.346	0.051
N1,3	0.65	1.00	4.500	0.105691057	0.162601626	0.73170703 C5	1.593	1.386	0.207
N2,3	0.70	1.00	4.995	0.104555639	0.149365198	0.74607916.	1.260	1.155	0.105 0.106
C1	0.64	1.00	4.460	0.105747800	0.162688923	0.73156327. C8	1.198	1.157	0.041
C2	0.68	1.00	4.750	0.105099260	0.155702608	0.73919813 C9	1.226	1.483	0.257
C3	0.63	1.00	4.250	0.106428267	0.170285228	$0_{0.72328650}$ C10	0.947	0.955	0.008
C4	0.65	1.00	4.500	0.105777055	0.16273393	0.731489015	1.3217		
C5	0.62	1.00	4.170	0.106679115	0.172899701	0.720421184	1.3675		
C6	0.63	1.00	4.330	0.106184893	0.167748645	0.726066462	1.1361		
C7	0.68	1.00	4.830	0.105363075	0.158202816	0.736434109	1.2611		
C8	0.68	1.00	4.830	0.10492035	0.15361691	0.74146274	1.1465		
C9	0.63	1.00	4.330	0.106274029	0.167889462	0.725836509	1.4581		
C10	0.69	1.00	4.920	0.104670862	0.15125847	0.744070668	0.9520		

Table 6: Comparison of the Compressive Strength Results Obtained by the Two Models.

Points	Scheffe	Osadebe(O)	Difference	$\%$

